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SLICING REGRESSION: A LINK-FREE 
REGRESSION METHOD 

RAND Corporation a n d  University of California a t  Los Angeles 

Consider a general regression model of the form y = g(a  + x'p, a), 
with an arbitrary and unknown link function g. We study a link-free 
method, the slicing regression, for estimating the direction of p.  The 
method is easy to implement and does not require iterative computation. 
First, we estimate the inverse regression function E(xly) using a step 
function. We then estimate r = Cov[E(xly)], using the estimated inverse 
regres~ion~function.Finally, we take the spectral decomposition of the 
estimate r with respect to the sample covariance matrix for x. The 
principal eigenvector is the slicing regression estimate for the direction of 
p.  We establish &-consistency and asymptotic normality, derive the 
asymptotic covariance matrix and provide Wald's test and a confidence 
region procedure. Efficiency is discussed for an important special case. 

Most of our results require x to have an elliptically symmetric distribu- 
tion. When the elliptical symmetry is violated, a bias bound is provided; the 
asymptotic bias is small when the elliptical symmetry is nearly satisfied. 
The bound suggests a projection index which can be used to measure the 
deviation from elliptical symmetry. 

The theory is illustrated with a simulation study. 

1. Introduction. Regression analysis is usually based on a working model. 
For example, we might assume the standard linear model 

where y denotes a scalar outcome variable, x denotes a d-dimensional column 
vector of regressor variables and P denotes a d-dimensional column vector of 
slope coefficients. Under this model, we might use the least squares regression 
to estimate the parameter vector ( a ,p'). 

In most empirical applications of regression analysis, the working model is 
2t best an  approximation. We probably do not believe in the working model, 
therefore we should be concerned about robustness against violations of the 
issumptions in the model. For example, we might consider distribution uiola- 
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tion: the error distribution might not be normal. There is a rich literature on 
distribution violation for the linear model and robust methods which protect 
against distribution violation; see, e.g., Huber (1981). 

On the other hand, the functional form of the model might also be violated. 
For example, in applying the least squares regression, one might be concerned 
whether E(ylx) is indeed linear in x ' P  Instead, the true model might have the 
following form: 

where the bivariate function g is the link function, F is the error distribution; 
both g and F are assumed to be arbitrary and unknown. We call a model of 
form (1.1) a general regression model. 

When the link function is arbitrary and unknown, we cannot estimate the 
entire parameter vector (a,  P'). The most that can be identified for (a,  P') is the 
direction of the slope vector P, that is, the collection of the ratios {Pj/P,, 
j, k = 1 , . . . ,dl. In other words, we can only determine the line generated by P, 
but not the length or the orientation of P. Whether we can actually identify 
the direction of p is examined in Appendix A. 

Why should we be concerned about estimating the direction of P? In some 
situations, the direction of p might be the estimand of interest; an interesting 
example from radiobiology is given in Vegesna, Withers and Taylor (1988). 
When the prediction of y from x is of interest, we can first estimate the 
direction of p, then use nonparametric regression of y on x'p to estimate the 
link function g .  For inference purposes, being able to identify the direction of 
p means we can distinguish between H,: Pj = 0 and HA: Pj # 0, i.e., we can 
determine whether a specific regressor variable, say, xj, has an effect on the 
outcome; see the inference results in Section 4.3. 

Given sufficient prior information, we might specify a link function and an 
error distribution and proceed with the parametric regression method based 
on the working model. For example, we might specify the standard linear 
model and proceed with the least squares regression. If the true model does 
not have the specified link function, we have link violation. Brillinger (1977, 
1983), Goldberger (1981), Greene (1981, 1983), White (1980, Chung and 
Goldberger (1984), Ruud (1983, 19861, Duan and Li (1985, 1987, 1991) and Li 
and Duan (1989) studied the behavior of various parametric regression meth- 
ods under link violation. 

There are many situations in which we do not have precise knowledge about 
the link function. It is therefore desirable to use estimation methods which do 
not require the specification of a link function. We will call such estimation 
methods link-free regression methods. Even when we do have some prior 
information on the link function, it might still be desirable to use link-free 
methods because the prior information might be highly imprecise. 

We study a link-free regression method, the slicing regression, for estimat- 
ing the direction of p. The slicing regression is very easy to implement and 
does not require iterative computation. The method is based on a crucial 
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relationship between the inverse regression E(xl y) and the forward regression 
slope p;  see Theorem 2.1. The empirical algorithm is given in Section 3. First, 
we estimate the inverse regression curve E(xl y) using a step function: we 
partition the range of y into slices and estimate E(xl y) in each slice of y by 
the sample average of the corresponding x's. We then estimate the covariance 
matrix r = Cov[ E(xl y)], using the estimated inverse regression curve. Finally, 
we take the spectral decomposition of the estimate f with respect to the 
sample covariance matrix for x. The principal eigenvector is the slicing regres- 
sion estimate for the direction of p. 

We establish the basic asymptotic theory for the slicing regression in 
Section 4: consistency, asymptotic normality, the asymptotic covariance ma- 
trix, Wald's test and a confidence region procedure. We also discuss efficiency 
for an important special case: there exists an unknown transformation of y to 
the standard linear model and x is normally distributed. The slicing regression 
usually has good efficiency and is insensitive to how the range of y is 
partitioned into slices. 

Most of the results in this paper require the following design condition: 

The regressor variable x is sampled randomly from a 
(DC'l) nondegenerate elliptically symmetric distribution. 

We will refer to the distribution of x as the design distribution. We study the 
behavior of the slicing regression when the design distribution deviates from 
elliptical symmetry and establish a bias bound (Theorem 6.1); the asymptotic 
bias is small when the design distribution is nearly elliptically symmetric. The 
bias bound can be estimated empirically and suggests a projection index which 
can be used to measure the deviation from elliptical symmetry. 

We can obtain different versions of the slicing regression by using different 
weights for the slices when estimating T.We derive the optimal weights in 
Section 5. If the distribution of x is normal, the optimal weights are propor- 
tional to the number of observations in each slice. If the distribution of x is 
elliptically symmetric but not normal, the optimal weights in essence impose a 
heterogeneity correction. 

We give results from a simulation study in Section 7 to demonstrate the 
behavior of the slicing regression for moderate sample sizes. 

REMARK1.1. The slicing regression reduces to the usual discriminant 
analysis if we partition the range of y into two slices. We usually assume 
normality for x (conditioned on y) for discriminant analysis [Fisher (1936), 
Haggstrom (1983)l. This condition is analogous to (DC.1); both conditions 
follow from the weaker condition (DC.1') in Remark 2.2. 

2. Inverse regression. An obvious way to estimate the direction of p 
without specifying a link function is to use a suitable nonparametric regression 
method to estimate the forward regression function 

T(X) = E(Ylx). 
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Since 77 depends on x only through x'p when y follows a general regression 
model of form (1.11, it is possible to determine P from 7 ,  e.g., using the 
gradient of 7 ,  which is proportional to P. This approach might be unsatisfac-
tory due to the curse of dimensionality: For realistic sample sizes, it is difficult 
to implement standard nonparametric regression methods such as kernel 
methods, nearest neighbor methods, or smoothing splines, when the dimen-
sionality d is larger than two, because the design points are very sparse; see, 
e.g., Huber (1985). 

In order to avoid the curse of dimensionality, we consider the inverse 
regression function 

The inverse regression function is easy to estimate because y is a scalar; each 
component of the function can be estimated as a one-on-one nonparametric 
regression, thus we are free from the curse of dimensionality. 

The inverse regression function might be of interest in its own right for 
studying the relationship between y and x. For example, inverse regression 
received a fair amount of attention in calibration problems; see, e.g., Krutchkoff 
(1967, 1969)and Hunter and Lamboy (1981). Conway and Roberts (1983) used 
a variant of the inverse regression, the reverse regression, to study job 
discrimination. 

When we are mainly interested in the forward regression, it might still be 
useful to consider the inverse regression if the inverse regression provides 
useful information about the forward regression. This is established in the 
following theorem. 

THEOREM2.1. Assume the general regression model (1.1) and the design 
condition (DC.1). The inverse regression function (2.1) falls along a line: 

(2.2) [(Y) = P + ~ P K ( Y ) ,  
where p = E(x), 2 = cov(x) and ~ ( y )is a scalar function of y: 

PROOF. Design condition (DC.1) implies 

The theorem follows from the fact that 5(y) = E[ ~ ( x l x ' ~ 1 ly I. 

According to the theorem, 

(2.5) P a Z- l ( t ( y )  - P ) ,  

with the proportionality constant being l / ~ ( y ) .For any y with ~ ( y 1# 0,we 
can determine the direction of p using the right-hand side of (2.5). The 
following corollary allows us to combine the information from all y's. 
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COROLLARY2.2. Assume the same conditions in Theorem 2.1. Let = 

cov(t(y)). The slope vector p solves the following maximization problem: 
b'rb 

max L ( b )  , where L ( b )  = -
~ E R ~ b'Cb ' 

The solution is unique (up to a multiplicative scalar) if and  only if ~ ( y )$ 0. 

PRCOF. According to (2.21, 

r = V a r ( ~ ( y ) ) C p p ' C  

has rank one. The result follows from Cauchy's inequality. 

According to the corollary, p is the principal eigenvector for r with respect 
to the inner product 

(2.7) (b,v)  = b'Cv.  
The maximum L(P)  is the principal eigenvalue. Since the rank of I- is one, the 
spectral decomposition for r is trivial: all eigenvalues except the first are zero. 
The corollary simply restates the fact that  [(y) falls along the line (2.2). On 
the other hand, the method suggested in Corollary 2.2 is more useful than that 
in Theorem 2.1 when the design distribution deviates from elliptical symme-
try. Although the inverse regression might no longer fall along a line, it is still 
possible that ,@ would (nearly) solve the maximization problem (2.6); see 
Remark 2.1. 

The maximand L(b) is the R2 for the nonparametric regression of x 'b  
on y :  

I t  measures how well we can predict x ' b  from y.  The corollary indicates that 
among all linear combinations x 'b,  y predicts x'p the best. 

REMARK2.1. If the stochastic term E is degenerate and the link function is 
invertible, Corollary 2.2 would hold for any design distribution, elliptically 
symmetric or not. To see this, note that conditioning on y is equivalent to 
conditioning on x'p, therefore I- = Cov[E(xx'p)]. The maximand L(b) is the 
R v o r  the regression of x ' b  on x'p, which is maximized for b a p.  Further 
discussions on Corollary 2.2 are given in Section 6. 

REMARK2.2. Design condition (DC.1) can be replaced by the following 
weaker condition in Theorem 2.1 and Corollary 2.2: 

The regressor x is sampled randomly from a nondegenerate 
(DC.1') probability distribution; the conditional expectation 

E(x'blx1P)is linear in x'p for all b E Rd.  

3. Slicing regression. We now apply the results in Section 2 to the 
sampling case. Given a random sample {(y,,xi),  i = 1,. . . ,n)  from a general 
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regression model (1.11, we want to estimate the direction of the slope vector P .  
In order to apply Theorem 2.1 or Corollary 2.2, we need to estimate the 
inverse regression function ((y). For simplicity, we use a step function esti- 
mate (cf. Remark 3.1). We partition the range of y into, say, H slices, 
{s,, . . . , sH}. For each slice of y, we estimate [(y) = E(xl y) by the sample 
average of the corresponding x's. More specifically, our estimated inverse 
regression function is 

where lihis the indicator for the event yi E sh.  
The estimated inverse regression function converges to the true inverse 

regression function if we choose a suitable sequence of partitions whose 
meshes decrease to zero as n -+ co. However, since ((y) falls along a line, a 
crude estimate for ((y) is adequate for estimating its direction. We assume for 
simplicity that the partition is fixed a priori and does not depend on n .  

Under the same assumptions in Theorem 2.1, we have 

thus the expectation of the estimated inverse regression function also falls 
along the line (2.2). 

If the scalar k j  for the j t h  slice is nonzero, we can estimate the direction of 
p using the direction of p ' j )  = e l ( f j  - X), where X is the sample average and e is the sample covariance matrix for the observed x's. By the central limit 
theorem, p ' j )  converges to kjP at  rate 6,therefore the direction of p ' j )  is 
6-consistent for the direction of p if k j  is nonzero. 

Usually there is more than one slice for which kh is nonzero. We should 
combine the information from all the slices to estimate the direction of P .  We 
will use a modification of the maximization problem (2.6) to do this. First we 
introduce some notations: 

We estimate I- by 

where W is an arbitrary symmetric nonnegative definite H by H matrix, 
chosen a priori, which satisfies 

(3.6) W 1 =  0. 
We can interpret f as a weighted covariance matrix for the data vector 
{(,, . . . ,fH}, using W as the weight matrix. Condition (3.6) is required for f to 
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be location invariant. By the strong law of large numbers, f converges almost 
surely to 

tW[' = k'Wk2PP12, 

which is proportional to r. 
For a given weight matrix W, we consider a maximization problem similar 

to (2.6): 

b'f b 
max t(b), where (b)  = -
~ E R ~ b12b' 

We will refer to any solution to (3.7), p ,  as a slicing regression estimate for the 
direction of p. This is usually defined uniquely up to a multiplicative scalar. 
The slicing regression estimate f i  is the principal eigenvector for f with 
respect to the inner product 

(2.7') [b ,  v] = b 'ev.  

The maximum 

(3.8) il= L ( p )  
is the principal eigenvalue. 

The estimate p( j )discussed earlier is a special case of the slicing regression 
estimate, when the weight matrix is taken to be W = uu', where u j  = 1-Bj, 
u h  = -6, for h +j and fib is the sample proportion of y,'s in the hth  slice. 

There are many other choices for the weight matrix W. For example, we can 
take 

(3.9) W =  W(')= D(r)  - r r ' ;  1 = 1; rh 2 0, h = 1, . . . , H ;  

where D(r) denotes the diagonal matrix with elements from the H-dimen- 
sional column vector r. With this weight matrix, f is the covariance matrix for 
the data vectors {il,.. . ,lH),with the hth  slice weighted by rh.Note that r is 
a probability measure on the index set (1,. . . ,H). 

An especially important weight matrix of form (3.9) is W(P), for which each 
slice is weighted by the probability for y to fall inside the slice. We will refer to 
this weight matrix as the proportional to size (pps) weight matrix. We will 
show in Section 5 that the pps weight matrix is optimal when the design 
distribution is normal. 

REMARK3.1. The step function estimate (3.1) might not be very efficient 
for estimating t(y) and can be improved upon, e.g., using kernel estimates. We 
might also choose the amount of smoothing adaptively, say, choose H adap- 
tively. In order to present the idea of slicing regression with a minimum of 
obfuscation, we have focused on the step function estimate with a fixed 
partition. The consideration of other smoothing methods and the adaptive 
choice of the smoothing parameter remains to be examined. However, the 
efficiency result in Section 4.5 indicates that the slicing regression estimate 
based on a fixed partition step function is nearly fully efficient for an impor- 
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tant special case, therefore the method might be insensitive to the smoothing 
method or the smoothing parameter. 

REMARK3.2. If the covariance matrix Z is known, we can use Z instead of 
2 in our maximization problem: 

b'fb 
max L (b )  , where L (b)  = -
b t R d  b'Cb ' 

When the distinction is necessary, we will refer to the slicing regression based 
on (3.7) as the ignorant slicing regression and refer to the slicing regression 
based on (3.7') as the nonignorant slicing regression. The nonignorant slicing 
regression estimate p is the principal eigenvector for with respect to the 
inner product (2.7). The maximum 

(3.8')  /c, = L(p)  
is the principal eigenvalue. 

It might appear that the nonignorant estimate would perform better than 
the ignorant estimate. Contrary to this intuition, the ignorant estimate usually 
performs better; see Section 4.4. 

4. Asymptotic theory. We now establish the basic asymptotic behavior 
for the slicing regression: consistency, asymptotic normality and the asymp- 
totic covariance matrix. The results are then applied to two standard inference 
problems: testing a null hypothesis and constructing a confidence region. We 
also discuss efficiency for an important special case. Throughout this section 
we assume the weight matrix W is given a priori and satisfies (3.6). 

4.1. Consistency. It was noted in Section 3 that we can estimate the 
direction of p consistently using p ( j )  if kj is nonzero. We now consider the 
consistency property for the slicing regression estimate in general. An estimate 
f i  is consistent for the direction of p if the angle between p and p converges to 
zero, i.e., 

where the cosine function is taken with respect to the inner product (2.7). 

THEOREM4.1. Assume the general regression model (1.1), the design 
condition (DC.1) and the following conditions: 

The weight matrix W is symmetric and nonnegative definite 
(DC'2) end  satisfies (3.6). 

(DC .3) k'Wk > 0. 

The slicing regression estimate 6, which solves the maximization problem 
(3.7) or (3.79, is consistent for the direction of P .  Furthermore, the estimated 
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principal eigenvalue A, in (3.8) or (3.8') is a consistent estimate for the 
population principal eigenvalue 

(4.2) A, = k'Wk. 
The proof is sketched in Appendix C. 

It  might be difficult to verify (DC.3) because very little is known a priori 
about k. If rank(W) = H - 1, then (DC.3) is satisfied if 

(DC.3') k f  0,  

which is much easier to verify. 
A sufficient condition for (DC.3') is that ~ ( y )be monotonic. This condition 

might be verifiable a priori in many empirical applications. A scientist might 
not have enough prior information to specify a link function; he might, 
however, have enough prior information on the ranking of the effects, so he 
can affirm the monotonicity of K .  Further discussions on the monotonicity 
condition are given in Appendix A. 

4.2. Asymptotic distribution. We now discuss the asymptotic distribution 
for the slicing regression. We assume for convenience that p has been normal- 
ized to have length one: 

(4.3) plzp = 1. 
In order to study the asymptotic covariance matrix, we also normalize the 
slicing regression estimate: 

, . * A  

(4.4) plzp = 1,  prep> 0, 
for the ignorant slicing regression and 

(4.4') z = 1, plzp > 0, 

for the nonignorant slicing regression. Since we do not know p, we cannot 
determine empirically whether the second part of (4.4) or (4.4') is satisfied or 
not: we cannot choose between p and -p. Nevertheless, the distinction 
between the two solutions is irrelevant for inference about the direction of p; 
see Section 4.3. 

Design condition (DC.1)implies that the conditional covariance matrix for x 
given x'p has the form 

where a is a scalar function and E[a(xlP)]= 1. If the design distribution is 
normal, a is identically one. 

We introduce some more notations: 
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The asymptotic distribution for the nonignorant slicing regression is given in 
Theorem 4.2; the result for the ignorant slicing regression is given in Theorem 
4.2'. The proofs are sketched in Appendix C. 

THEOREM4.2. Assume the general regression model (1.11, the design 
condition (DC.l), the normalization (4.3) and conditions (DC.2) and (DC.3). 
The nonignorant slicing regression estimate, which solves the maximization 
problem (3.7') and is normalized by (4.4'1, has the following normal approxi- 
mation: 

where the scalar A is given by 

THEOREM Assume the same conditions in  Theorem 4.2. The ignorant 4.2'. 
slicing regression estimate, which solves the maximization problem (3.7) and 
is normalized by (4.4), has the following normal approximation: 

where S and T are nonnegative scalars, 

(4.9) S = A + B - 2 C ,  

A is the same as in  (4.7), B = E[a(xlP)((x - P)'P)~I,C = u ' c / u ' ~and 


For inference purposes, we need to estimate the asymptotic covariance 
matrix. For some situations to be discussed later, we can use the estimated 
principal eigenvalue /Cl in (3.8) or (3.8') to estimate the scalar A in (4.7) or S 
in (4.9). [The second term on the right-hand side of (4.8) does not affect the 
inference about the direction of p,  therefore it is not necessary to estimate T.] 
Otherwise, we might need to estimate p, a, k, B and c, in order to estimate A 
or S.'We can use the following method of moment estimates: 

1 n 

The derivations of (4.10)-(4.12) are sketched in Appendix C. 
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REMARK4.1. Design condition (DC.l) can be replaced in Theorems 4.2 and 
4.2' by the weaker conditions (DC.1') and (4.5). Note that (4.5) is equivalent to 

Var(x'b'x'P) does not depend on b .  
E[~ar(x 'b lx 'p)]  

The numerator in (4.5') is the residual variance when we regress x'b on x'P. 
This regression is usually heteroscedastic; condition (4.5') indicates that the 
pattern of heteroscedasticity does not depend on b. 

REMARK4.2. The results in Theorems 4.2 and 4.2' would still hold if we 
replace W by a consistent estimate W ;  see the proof for the theorems in 
Appendix C. 

REMARK4.3. If we normalize the ignorant slicing regression estimate by 
(4.4') instead of (4.41, the asymptotic covariance matrix is given by the first 
term on the right-hand side of (4.8). For empirical applications, we usually 
have to normalize by (4.4) instead of (4.4') because 2 is unknown. For 
inference about the direction of p, the two asymptotic covariance matrices are 
equivalent. 

4.3. Inference. We now apply the results in Section 4.2 to two basic 
inference problems: testing hypotheses and constructing confidence regions for 
p. Since we can only identify the direction of p, we can only test scale-
invariant hypotheses of the form 

(4.13) Ho: L'P = 0,  

where L is a given d x q matrix of full rank q Id. Under the null hypothesis 
(4.13), the terms proportional to pp'  in the asymptotic covariance matrix are 
annihilated by L, therefore Wald's test is given by 

for the ignorant slicing regression and 

for the nonignorant slicing regression. Wald's test does not depend on the sign 
of 6: we can choose either ) or -), disregarding the second part of (4.4) or 
(4.4'). 

Wald's test can be inverted to obtain confidence regions. They have to be 
cone-shaped: If p is in the confidence region, any scalar multiple of /3 has to be 
in the region also. For example, we can test hypotheses of the form 

Ho: P .a  Po 
and take the confidence region to be those Po's for which the previous null 



516 N.DUAN AND K.-C. LI 

hypothesis is accepted. This leads to the confidence region 

which has asymptotic confidence level 1- a;  the sine function is taken with 
respect to the inner product (2.7') and p is the ignorant slicing regression 
estimate. We can also construct confidence regions for subvectors or linear 
combinations of p .  

4.4. Normal design distribution. The asymptotic theory for the slicing 
regression is greatly simplified if the design distribution is normal. Under 
normality, we have 

It  follows that the scalars in Theorems 4.2 and 4.2' are given by 

The scalar S for the ignorant slicing regression is smaller than the scalar A 
for the nonignorant slicing regression. In other words, even when we know the 
true X,  we are better off ignoring this information and using 2 in the 
maximization problem (3.7). Note that the maximization problem (3.7) is 
different from the usual two matrices spectral decomposition: I? and 2 are 
dependent. 

The benefit of ignorance depends on the design distribution and is not 
universally true. We give a somewhat artificial example in Appendix B for 
which the knowledge about X does help. We can expect, though, that the 
benefit of ignorance will hold for design distributions reasonably close to being 
normal. 

If we use the pps weight matrix, 

the scalars in Theorems 4.2 and 4.2'are given by 

which can be estimated consistently by substituting /il for A,. In other words, 
when we use the pps weight matrix and the design distribution is normal, we 
do not need to estimate a, k and c. We will establish in Section 5 that the pps 
weight matrix (4.16) is optimal for the normal design distribution.. 

4.5. Efficiency. We consider the efficiency of the slicing regression esti- 
mate for an important special case. We assume there exists an unknown 
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transformation to the standard linear model: 

We also assume that the design distribution is normal. We use the ignorant 
slicing regression based on the pps weight matrix. As our benchmark for 
comparison, we use the least squares regression of t(y) on x, which gives an 
efficient estimate for (a,  P'). In order to implement this procedure, we need to 
have perfect prior information on the transformation t. This information is 
not available in most empirical applications. The slicing regression does not 
require any knowledge about the transformation t. 

We now compare the performance for the two methods for estimating the 
direction of p. In order to make the comparison, we normalize the least 
squares slope to satisfy the first part of (4.4). We also assume (4.3). The 
normalized least squares slope is approximately 

(4.19) P + ((cP1 - PP1)S,, - + P P ' ( ~- Z I P ,  
where S,, is the sample covariance between E'S and x's. This is asymptotically 
normal with mean p and asymptotic covariance matrix 

PP') + TPP'] 

We want to compare the scalar u2 in (4.20) with the scalar S in (4.17), which 
in this special case is given by 

where 

Q 2  is the proportion of the variance of t(y) explained by the discretized t(y)'s, 
GI,. . . , tH). 

For estimating the direction of p, the efficiency for the ignorant slicing 
regression is 

u2Q2 ( 1  - R2)Q2
efficiency = --

1 - Q 2 + , u 2  1 -Q2R2  ' 

where R2 is the usual R2 for the linear mode1 (4.18). 
Unless R2 is very close to one, the efficiency in (4.22) is usually fairly high, 

even when the number of slices is fairly small. For example, we assume 
R~ = 0.30, a value typical of social science research. Assume for now that we 
use equal size slices: the partition is chosen so that the probability for y to fall 
inside each slice is equal. For three slices, we have Q2 = 0.79 and efficiency = 

0.72. For ten slices, we have Q2 = 0.96 and efficiency = 0.94. Ten slices are 
probably good enough for most purposes. 



518 N. DUAN AND K.-C. LI 

REMARK4.4. I t  is possible to improve upon the equal size slices. For three 
slices, the optimal partition yields Q2 = 0.81 and efficiency = 0.75 when R 2  = 

0.30. 

5. Optimal weight matrix. So far we have left open the choice of the 
weight matrix W. We now derive the weight matrix W which minimizes the 
scalar S or A in the asymptotic covariance matrix. The pps weight matrix 
(4.16) appears to be reasonable and also guarantees that condition (DC.3) can 
be replaced by the weaker condition (DC.3'). We will establish that it is indeed 
optimal for the normal design distribution. For other elliptically symmetric 
design distributions, (4.16) might not be optimal; the optimal weight matrix in 
essence imposes a heterogeneity correction which is not necessary for the 
normal design distribution. The optimal weight matrix might depend on some 
unknown quantities, which can be estimated from the data in empirical 
applications. 

The scalars A and S depend on W only through 

(5.1) u = Wk. 

We will refer to u as the scoring rule. Two weight matrices with the same 
scoring rule give asymptotically equivalent slicing regression estimates. We 
shall find the optimal scoring rule under the constraints 

then find a corresponding weight matrix W which satisfies (5.1). 
Given a scoring rule u, we can always find a representation of the form 

which satisfies (5.1). The corresponding f can be interpreted as a weighted 
covariance matrix with a location correction: 

where j is the weighted sample average i = C f=l(rh + qh)[h. 
We give the optimal scoring rule u in Theorems 5.1 and 5.1t, respectively, 

for the nonignorant and ignorant slicing regression estimates. The proofs are 
straightforward applications of the Lagrange multipliers method, with the 
constraints u ' l  = 0 and u'k = 1. 

We introduce some new notations: 

Since p is a probability measure on the index set (1,. . . ,HI, we have moment 
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operators such as 

THEOREM Under the same assumptions in  Theorem 4.2, the optimal 5.1. 
nonignorant slicing regression estimate, which minimizes the scalar A in 
(4.7), is based on the scoring rule 

The minimized scalar is 

1 E,(a)
A = - = - = -

1 

u'k ug(k) A,' 

which can be estimated consistently by the reciprocal of /il  i n  (3.8'). 

THEOREM Under the same assumptions in  Theorem 4.2', the optimal 5.1'. 
ignorant slicing regression estimate, which minimizes the scalar S in (4.9), is 
based on the scoring rule 

where v = [E@(a)- u@(c,k)l/u:(k). The minimized scalar is 

For normal design distributions, the optimal scoring rules (5.6) and (5.6') 
are both given by u h  = phkh ,  which can be represented by the pps weight 
matrix W@). In other words, the pps weight matrix is optimal for the slicing 
regression when the design distribution is normal. The minimized scalars A 
and S are given by (4.17). 

When the design distribution is nonnormal, we need to find suitable repre- 
sentations for the optimal weight matrices corresponding to the optimal 
scoring rules. The optimal scoring rule (5.6) can be represented by W(@),the 
weight matrix of form (3.9) with r = p. This optimal weight matrix can be 
interpreted as the pps weight matrix with a heterogeneity correction: each slice 
is weighted by p h / a h  instead of ph, thus slices with less dispersion (smaller 
a,) are weighted heavier. f can be interpreted as a weighted covariance matrix 
for the data vectors {ll,.. . , lH},with each slice weighted by f i , .  

For the optimal scoring rule (5.6'1,there does not appear to be a closed form 
representation of form (3.9), therefore we will use a representation of form 
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(5.3). Taking r = p, we have 

The optimal weight matrix can be interpreted as W(p) with a location correc- 
tion. Instead of centering l h7s  by 5 = C f=lphlhto derive the estimate ?, we 
center them by = qh(h5 + C f='=, as in (5.4). The location correction can be 
interpreted as follows. We approximate the parameter ch roughly by 

thus the optimal scoring rule is approximated by 

The first term on the right-hand side of (5.9) is the scoring rule for the pps 
weight matrix, W(P). The second term is the scoring rule for W@), the pps 
weight matrix corrected for heterogeneity. Therefore the optimal scoring rule 
(5.6') is roughly a convex compromise between the two. 

REMARK5.1. Design condition (DC.1) can be replaced by the weaker condi- 
tions (DC.1') and (4.5) in Theorems 5.1 and 5.1'. 

REMARK5.2. In order to implement the optimal slicing regression when 
the design distribution is nonnormal, we might have to estimate nuisance 
parameters (a, k,  c), which depend on P. We can use the pps weight matrix to 
obtain an initial estimate for p, then estimate the nuisance parameters from 
this initial estimate. We can then estimate the optimal scoring rule and the 
optimal weight matrix and reestimate the direction of /3 using the estimated 
optimal weights (cf. Remark 4.2). 

Prior to carrying out the reestimation, we can estimate the optimal scalar 
(5.7) or (5.7') and compare it with the estimated scalar for the original weight 
matrix. The ratio between the two scalars can be used to estimate the potential 
improvement in efficiency. If the potential improvement is small, the reestima- 
tion might not be worthwhile. This is likely to be true if the heterogeneity is 
moderate, i.e., ah 's  are close to each other. We give an extreme example in 
Appendix B to demonstrate that the weight adjustment can result in a 
substantial improvement if the heterogeneity is severe. 

6. Violation of elliptical symmetry. We have assumed until now that 
the design distribution is elliptically symmetric. It is natural to ask whether 
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the slicing regression still provides a good estimate for the direction of p when 
the elliptical symmetry is violated. We now establish a bias bound for the 
population case. 

Let p be a solution to the maximization problem (2.6) and A = be the ~ ( p )  
maximum. They are, respectively, the principal eigenvector and eigenvalue for 
the spectral decomposition of r with respect to the inner product (2.7). p is 
the population version of the slicing regression estimate for the direction of p. 
When the design distribution is not elliptically symmetric, 6 might not be 
collinear with p. We measure the noncollinearity between p and p by 
sin2@, @)j where the sine function is taken with respect to the inner product 
(2.7). 

We now consider another spectral decomposition. Let A = Cov[ E(xlxlp)l. 
We take the spectral decomposition of A with respect to the inner product 
(2.7). The principal eigenvector is p;  the principal eigenvalue is one. Let r be 
the second eigenvalue. We can interpret 7 as a measure of the deviation from 
elliptical symmetry. Under elliptical symmetry, E(xlxlp) falls along the line 
(2.4), therefore r = 0. When elliptical symmetry is violated, E(xlxrp) is a curve 
which meanders around (2.4) and r measures the largest mean squared 
deviation from (2.4). 

The comparison between A and r gives the following theorem. 

THEOREM6.1. Assume the general regression model (1.1). Assume the 
regressor x is sampled randomly from a probability distribution which might 
not be elliptically symmetric. Let p be a solution to the maximization problem 
(2.6). The noncollinearity between p and p satisfies the following bound: 

The proof is sketched in Appendix C. 

If the design distribution is elliptically symmetric, we have r = 0, thus the 
right-hand side of (6.1) is zero, i.e., the slicing regression is Fisher consistent 
(cf. Corollary 2.2). If A = 1, the bound is again zero, thus we have Fisher 
consistency even though the design distribution might not be elliptically 
symmetric. In order for A = 1, we must have y = g(xfp), where g is invertible 
(cf. Remark 2.1). 

If the right-and side of (6.1) is close to zero, the slicing regression would be 
nearly Fisher consistent for the direction of p. This is true if the design 
distribution is nearly elliptically symmetric ( r  = 0) or if A is close to one. 

For the sampling case, the bias bound (6.1) can be estimated from observed 
data. Note that both A and 7 depend on p. If we have a consistent initial 
estimate for the direction of p, we can then estimate T using this initial 
estimate and carry out the spectral decomposition to estimate r. ~ f ' s u c han 
initial estimate is not available, we can replace 7 in (6.1) by 
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In order to estimate T'"~, we need to maximize the estimate ?(P) over P. This 
is a projection-pursuit problem, with .i(B) as the projection index. Huber 
[(I9851 and discussions] gave a comprehensive review of the projection pursuit 
problem. Cox (1985) suggested a projection index, the maximum curvature in 
Cox and Small (1978), which is analogous to T(P). 

7. A simulation study. We have conducted a simulation study to demon- 
strate the performance for the slicing regression estimate. We consider two 
general regression models: 

where p = (1,1,1,0,0,  O)', x - N(0, I,) and E - N(0,l) .  We generate samples 
of size n = 100 each for each model, then estimate the direction of P by the 
ignorant slicing regression estimate p, normalized by (4.4'); cf. Remark 4.3. In 
order to study the sensitivity of p to changes in the number of slices, H ,  we 
take H = 6,10,20. For each H ,  the grid points are equally spaced between -3 
and 3. In other words, the first slice is y 5 -3, the last slice is y > 3 and there 
are H - 2 slices in between. We use a thousand replicates to estimate the 
expectation and the standard deviation for each component of p. We also 
estimate the total variance for p, i.e., the trace of the covariance matrix for p. 

The results of the simulation study are given in Tables 1and 2. For both 
models, ~ ( b )is very close to (0.577,0.577,0.577,0,0, O)', the true slope vector 
p normalized to have length one. The estimate is insensiti-ve to changes in the 
number of slices. For each model, the total variance varies by less than twenty 
percent when H changes from 6 to 20. This suggests that the choice of H for 
the slicing regression problem might not be as crucial as tile choice of the 
smoothing parameter for the typical nonparametric regression or density 
estimation problems. 

We also report the performance of the least squares estimate (after normal- 
ization) for comparison. For model (7.11, the least squares estimate is the 

TABLE7.1 

Expectation and standard deviation ( i n  parentheses) of j = ( j , , . . . , j 6 y  for (7.11, n = 100. The 


last row is the least squares estimate after normalization 


H 81 8 2  63 64 8 5  8, Total variance 

6 0.571 0.572 0.569 0.000 0.000 -0.004 0.0232 
(0.056) (0.055) (0.057) (0.069) (0.069) (0.066) 

10 0.570 0.572 0.570 0.001 -0.001 -0.004 0.0223 
(0.054) (0.054) (0.056) (0.068) (0.067) (0.065) 

20 0.569 0.571 0.569 0.001 0.001 -0.004 0.0263 
(0.059) (0.060) (0.062) (0.072) (0.071) (0.072) 


Least squares 0.572 0.573 0.571 0.002 -0.001 -0.003 0.0179 

(0.048) (0.048) (0.050) (0.060) (0.060) (0.060) 
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TABLE7.2 
Expectation and standard deviation ( i n  parentheses) of b = (b, ,  . . . , j6)1 for (7.21, n = 100. The 

last row is the least squares estimate after normalization 

82 8 3  8 4  8 5  6 ~ o t a lvariance 

6 0.568 0.570 0.570 0.000 0.003 -0.004 0.0284 
(0.062) (0.062) (0.064) (0.076) (0.075) (0.072) 

10 0.570 0.570 0.570 -0.001 0.002 -0.004 0.0268 
(0.060) (0.060) (0.062) (0.073) (0.073) (0.071) 

20 0.569 0.569 0.570 -0.001 0.002 -0.004 0.0273 
(0.060) (0.062) (0.063) (0.074) (0.074) (0.071) 

Least squares 0.561 0.560 0.562 0.003 0.001 -0.004 0.0554 
(0.082) (0.085) (0.086) (0.107) (0.104) (0.108) 

maximum likelihood estimate, therefore it outperforms the slicing regression 
estimate. However, the slicing regression estimate has a reasonably good 
relative efficiency, about eighty percent (0.0179/0.0223) for H = 10. For 
model (7.2)) the slicing regression estimate is about twice as efficient as the 
least squares estimate. It is also interesting to observe that the performance of 
the slicing regression estimate is roughly the same under the two models. This 
further confirms that the slicing regression estimate is insensitive to the 
choice of the slices; for the slicing regression, (7.1) differs from (7.2) only in 
transforming the grid points which determine the slices. 

I t  is perhaps unfair to compare the slicing regression estimate with the least 
squares estimate for model (7.2). After examining the residuals, we probably 
will use a Box-Cox transformation model, which might do a better job than 
the least squares regression without a transformation. However, the improve- 
ment in efficiency is at most thirty-three percent (1 - 0.0179/0.0266) for 
H = 10, because the transformation model estimate cannot perform better 
than the least squares regression based on the correct transformation. 

The example chosen here is fairly unfavorable for the slicing regression 
because R2 is rather high: R2 = 0.75 for model (7.1). If R2 is lower, e.g., if 
R2 = 0.30, the relative efficiency for the slicing regression would be higher 
than what is shown here; see Section 4.5. Finally, the simplicity of the slicing 
regression suggests itself as a good initial estimate if one wishes to pursue 
adaptive estimation. 

APPENDIX A 

Identifiability. We noted in Section 1that the most we can identify in 
the parameter vector ( a ,p') is the direction of p. We now discuss whether the 
direction itself can be identified. 

A.1. Identification using inverse regression. If the scalar function ~ ( y )in 
(2.3) is not identically zero, we can use (2.5) or Corollary 2.2 to identify the 
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direction of p. If we know further that K is monotonic, we can use Theorem 
4.1 and (DC.3') to verify the consistency of the slicing regression estimate. The 
following theorem establishes these properties for two rich classes of general 
regression models. 

THEOREM If the conditional distribution of y given x'p is stochasti- A.1. 
cally monotonic in x'p, i.e., ifP(Y Iylx'p) is monotonic in x'p, then ~ ( y )  + 0. 
If the conditional distribution of y given x'p has monotone likelihood ratio, 
then ~ ( y )  is monotonic in y. 

If we impose the stochastic monotonicity condition on the true model, we 
can then identify the direction of p using the inverse regression function. The 
class of general regression models which satisfy this condition is very rich and 
includes location families, monotonic transformation families and natural 
exponential families. Similarly, if we impose the monotone likelihood ratio 
condition, we can use the slicing regression to identify the direction of P. 

We now give an example to demonstrate that the monotonicity conditions 
are neither necessary nor redundant: 

EXAMPLE We consider a class of heterogeneous models of the form A.1. 

y = ~ g ( x ' p ) ,  where E ( E ~ x )= 0. 

The nonparametric forward regression E(ylx) is identically zero and provides 
no information about p;  y depends on P through heteroscedasticity instead of 
through the mean. The inverse regression might or might not be informative 
about p. If g is nonnegative and increasing in x'p, then K(Y) is increasing in I yl 
and therefore cannot be identically zero: larger 1 yl's are more likely to come 
from larger x'p's. If g is symmetric about zero and the distributions for x and 
F are both symmetric about zero, then K(Y) is identically zero. 

Theorem A.l follows from the following lemma about Bayesian estimation, 
which might be of interest in itself. 

LEMMA A.2. Let X= {K,(y)} be a one parameter family of sampling 
distributions, parametrized by 0. Assume that X has densities {k,(y)}. As- 
sume that I3 follows a prior distribution II(I3). Let 6(y) = E(I3Iy) be the 
posterior expectation and II(f3l y) be the posterior distribution. 

(i) If j4% is stochastically monotoni; in 0, then 6 cannot be a constant. 
(ii) The following three conditions are equivalent: (a) The sampling distri- 

butions in X have monotone likelihood ratio. (b) The posterior distributions 
II(I31 y), as a one parameter family parametrized by y, have monotone likeli- 
hood ratio. (c) The posterior expectation 6(y) is monotonic in y for all II(8). 

Theorem A.l follows immediately from Lemma A.2: we treat x'p as the 
parameter I3 and treat the conditional distribution of y given x'p as the 
sampling distributions X. The proof of Lemma A.2 is sketched in Appendix C. 
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A.2. Identification using forward regression. Li and Duan (1989) estab-
lished results similar to Theorem 2.1 for a rich class of parametric forward 
regressions. Let L(8, y) be a criterion function such as the negative of a 
log-likelihood function. Let the regression estimate (&, fit)be a solution to the 
minimization problem 

min L ( a  + x lb ,  y,) 
( a , b ' )i - 1  

The population version of this estimate is the solution (a*, P*') for the 
minimization problem 

min E [ L ( a  + x'b,y) ] ,  
( a ,b') 

where the expectation is taken over the joint distribution of y and x. Li and 
Duan [(1989), Theorem 2.11 have shown that 

under design condition (DC.l) and a convexity condition on L. If the propor-
tionality constant in (A.2) is nonzero, P* identifies the direction of P. The 
following theorem compares identification using forward and inverse regres-
sions. 

THEOREMA.3. Assume the general regression model (1.1) and the design 
condition (DC.1). Let L(8, y) be a criterion function which is convex in 8 for 
all y. Assume that the minimization problem (A.1) has a unique solution 
(a*,P*'). If ~ ( y )= 0, then p* is null. 

PROOF. Using the result in Li and Duan [(1989), Theorem 2.11, we need 
only minimize the following expectation over (a ,  c): 

(A.3) E [ L ( a  + c x ' ~ ,y)]  = E[E{L(a  + ~ x ' P , Y ) ~ Y } ]; 

the regression slope is then given by P* = PC*,where (a*, c*) minimizes (A.3). 
By the convexity of L and Jensen's inequality, the right-hand side of (A.3) is 
bounded from below by E[L(a + cE(xlPly),y)]. If ~ ( y )= 0, the minimization 
problem reduces to minimizing E[L(a, y)] over a ,  i.e., the optimal value for c 
is zero. 

According to the theorem, if any parametric forward regression based on 
(A.l) identifies the direction of P, then ~ ( y )$ 0; it follows that the inverse 
regression would also identify the direction of P. In other words, the inverse 
regression is at  least as effective as any parametric forward regression based 
on (A.1) for identifying the direction of P. 

Design condition (DC.l) is used in Theorem A.3 only to reduce (A.1) to the 
minimization of (A.3), not in the subsequent derivations. For the special case 
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of a simple regression, we have the following result which might be interesting 
in its own right. 

OBSERVATION Assume that (y, x) follows an arbitrary probability dis- A.4. 
tribution, where y and x are both scalars. Let L(6, y) be a criterion function 
which is convex in 6 for all y. If E(xl y) is a constant, then the parametric 
forward regression of y on x based on 

m i n ~ [ L ( a+ xb,y)] 
(a,b )  

has zero slope, i.e., the optimal value for b is zero. 
If inverse regression fails to reveal any relationship between y and x, 

parametric forward regressions based on convex criterion functions cannot 
either. When the joint distribution for (y, x)  is normal, this is a well-known 
fact: If E(xly) is a constant, then E(ylx) is also a constant; actually, y and x 
are independent in this case. 

APPENDIX B 

Weight adjustment. For nonnormal design distributions, the pps matrix 
might not be optimal. If the design distribution is nearly homogeneous, that is, 
ah 's  are close to each other, we would expect the pps weight matrix to have 
good efficiency relative to the optimal weight matrix. However, the pps weight 
matrix might be very inefficient if the design distribution is highly heteroge- 
neous. 

We now construct a rather extreme example with severe heterogeneity. We 
take x to be two-dimensional, with the design distribution being uniform on 
the circle centered at 0 with radius a,thus Cov(x) = I. Let 8 be the angle on 
the circle. We have 

Let the slope vector be p = (1,O)' and the model be y = x'p = x,. We divide 
the range of y into four slices, using the partition (- ficos(6), 0, cos(6)), 
where 6 is a small positive constant. The dispersion of x in the two extreme 
slices are therefore very small. 

We compare five slicing regression estimates for this example. 

1. poptis the optimal ignorant slicing regression based on the scoring rule 
(5.6)'). 

2. 	pP is the ignorant slicing regression based on the scoring rule (5.6). 
3. 	gp is the ignorant slicing regression based on the pps weight matrix. 
4. 	poptis the optimal nonignorant slicing regression based on the scoring rule 

(5.6). 
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5. PP is the nonignorant slicing regression based on the pps weight matrix. 
For 6 near zero, the scalars S or A for these estimates are approximately 

For 6 sufficiently small, Aopt is smaller than S O p t ,  thus the benefit of 
ignorance does not hold for this example. When Z is unknown, $Opt outper-
forms the other two ignorant slicing regressions substantially: the relative 
efficiency of pp is about 0.28, while the relative efficiency of pp is about 0.35. 

APPENDIX C 

Technical proofs. 

PROOFOF THEOREM4.1. Since f converges almost surely to a matrix 
proportional to r, both L(b) and i ( b )  converge to a criterion function 
proportional to L(b) in (2.6). The convergence is uniform in b. The rest of the 
theorem follows from Corollary 2.2. 

PROOFOF THEOREM4.2 AND THEOREM4.2'. Without loss of generality, 
assume that u'k = 1.We approximate f by 

f A ulkZPP'Z + ($ - 5)up1Z+ Zpur($- 5)' A (Zp  + A)(@ + A)', 

:zeswhere A = ( l  - 5)u. The nonignorant slicing regression m a x k '  

The nonignorant slicing regression estimate, normalized by (4.4'), is approxi-
mated by 

The right-hand side is asymptotically normal with mean P. The asymptotic 
covariance matrix is given by 

Using the approximation l, - 5, A C?=, l,,(x, - t h ) / n p h ,  it is straightfor-
ward to derive the asymptotic covariance matrix for A and verify (4.7) and 
Theorem 4.2. 

For the ignorant slicing regression, the denominator in ((3.1) is based on 2 
instead of Z. Using the approximation 
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the ignorant slicing regression estimate, normalized by (4.4), is approximated 
by 

(C.Zr) /? A p + (2-'  - ppr)A - (Z-'  - pp1/2)(%- C)p.  

The covariance matrix for %pgives the B term and the T term in (4.8) and 
(4.9). The covariance between A and %pgives the C term. 

For Remark 4.2, note that if we replace W by W, k by k and u by ii, the 
same approximation for f holds with A replaced by A = (l- Oii. Since A 
differs from A by a lower order term, the results in Theorems 4.2 and 4.2' 
remain the same. 

DERIVATIONOF (4.10)-(4.12). All three estimates follow from 

(4.10) follows from taking the expectation on both sides of this equation over 
x'p conditioned on y E s,. (4.11) follows from multiplying both sides by 
(P(x - p)I2, then taking expectation; (4.12) follows from multiplying both 
sides by p(x - p), then taking the conditional expectation. 

PROOFOF THEOREM6.1. Without loss of generality, assume E(x) = 0, 
Cov(x) = I, p'p = 1, 6'6 = 1. Let 8 be the angle between p and 6. We 
decompose B as follows: 

6 = cos(8)p + sin(8) 6, where 6'p = 0, 6'6 = 1. 

For any b E Rd, we have the inequality 

the second inequality follows from 

Taking b = cos(8)p + (sin(8)/~)6,we have brB = cos2(8) + sin2(8)/r and 

Since Var[E(xrSlxrp)]I T and Cov[xlp,E(xr61xrp)]= 0, we have brAb I 
cos2(e) + sin2(8)/r. I t  follows from ((3.3) that h(cos2(8) + sin2(8)/r) 1 1, 
which proves the theorem, 

PROOFOF LEMMAA.2. Without loss of generality, assume E(8) = 0. As-
sume that 8 = 0, i.e., / 8k,(y) dII(8) = 0. This is equivalent to / 8K,(y) dII(8) 
= 0. Since E(8) = 0, the integral in the last identity is the covariance between 
8 and K,(y), where y is treated as a constant. If X is stochastically mono-
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tonic, K is monotonic in 8, therefore this covariance cannot be identically zero. 
This establishes a contradiction and proves part (i). 

By definition, the monotone-likelihood ratio property for 3'is equivalent to 

where y f y' and 8 # 8' are arbitrary. The posterior density is given by 

where k,(y) = k,(y) dII(8) is the marginal density for y. Therefore we can 
divide the term inside the square bracket in (C.4) by kn(y)k,(yl) to obtain the 
monotone-likelihood ratio property for the posterior distributions and vice 
versa. This establishes the equivalence between (a) and (b) in (ii). 

It is a well-known fact that (b) implies (c). To verify that (c) implies (a), take 
the prior distribution to be uniform over two given points 8 and 8'. It follows 
from (c) that for any y < y', 

This inequality is equivalent to (C.4). 
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